

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

1 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		3.0	Permanent Facility		-
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.120 % to 0.126 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.126 % to 0.136 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	1.3 % to 0.076 %
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.070 % to 0.074 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

2 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.076 % to 0.070 %
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	0.5 nF to 100 nF	3.854 % to 1.32 %
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	100 μF to 10 mF	1.411 % to 1.17 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	100 nF to 100 μF	1.32 % to 1.411 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E with 50T Current Coil by Direct Method	20.0 A to 1000 A	0.956 % to 0.956 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

3 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 A to 10 A	0.144 % to 0.147 %
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	30 μA to 329.9 μA	0.348 % to 0.290 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 μA to 329.9 mA	0.290 % to 0.097 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mA to 3.3 A	0.097 % to 0.144 %
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 mV to 329.9 mV	0.233 % to 0.116 %
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 V to 1000 V	0.039 % to 0.059 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

4 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mV to 3.3 V	0.116 % to 0.039 %
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	0.5 nF to 329 nF	0.597 % to 0.293 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Inductance @ 1 kHz	Using Decade Inductance Box by Direct Method	100 μH to 1 H	0.653 % to 0.98 %
19	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	10 μA to 100 μA	1.187 % to 0.072 %
20	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.072%
21	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.072 % to 0.183 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

5 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
22	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	0.685 % to 0.07 %
23	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.071 % to 0.07 %
24	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.07 % to 0.071 %
25	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	0.1 Ohm to 100 Ohm	0.048 % to 0.4 %
26	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 kOhm to 1000 MOhm	0.013 % to 1.35 %
27	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 Ohm to 100 kOhm	0.4 % to 0.013 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

6 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
28	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 μA to 329.9 μA	0.20 % to 0.018 %
29	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	2.9 A to 10.9 A	0.05 % to 0.70 %
30	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E with 50T Current Coil by Direct Method	20.0 A to 1000 A	0.92 % to 0.92 %
31	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mA to 2.9 A	0.013 % to 0.05 %
32	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 μA to 329.9 mA	0.018 % to 0.013 %
33	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 k ohm	0.154%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

7 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
34	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 m ohm	2.119%
35	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 ohm	0.15%
36	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	10 m Ohm to 329.9 Ohm	6.123 % to 0.011 %
37	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 k ohm	0.154%
38	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 m ohm	0.582%
39	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 ohm	0.156%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

8 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
40	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 m ohm	2.313%
41	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 ohm	0.154%
42	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 k ohm to 1100 M ohm	0.014 % to 1.804 %
43	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 Ohm to 329.9 kOhm	0.011 % to 0.015 %
44	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 mV to 329.9 mV	0.062 % to 0.007 %
45	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 mV to 1000 mV	0.006%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

9 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
46	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mV to 3.3 V	0.007 % to 0.006 %
47	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	1 G ohm	2.319%
48	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	10 G ohm	2.361%
49	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	10 M ohm	2.36%
50	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	100 G ohm	3.81%
51	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	100 M ohm	2.312%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

10 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
52	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	1000 G ohm	5.519%
53	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	200 M ohm	2.342%
54	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	5 M ohm	5.94%
55	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	500 M ohm	2.316%
56	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT-100)	Using 6½ Digit Precision Multimeter by Direct Method	-200 °C to 800 °C	0.04°C
57	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (B Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	600 °C to 1800 °C	0.177°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

11 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
58	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (E Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 1000 °C	0.464°C
59	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (J Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1200 °C	0.12°C
60	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (K Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1370 °C	0.123°C
61	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (N Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1300 °C	0.131°C
62	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (R Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.309°C
63	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (S Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.283°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

12 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
64	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (T Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 400 °C	0.166°C
65	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (U Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 600 °C	0.123°C
66	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-100-385 Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 800 °C	0.041°C
67	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-1000-385 Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 630 °C	0.041°C
68	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (B Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	600 °C to 1800 °C	0.16°C
69	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (E Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 1000 °C	0.46°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

13 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
70	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (J Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200°C to 1200°C	0.12°C
71	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (K Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1370 °C	0.122°C
72	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (N Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1300 °C	0.13°C
73	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (R Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.309°C
74	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (S Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.287°C
75	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (T Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 400 °C	0.153°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

14 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
76	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (U Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 600 °C	0.124°C
77	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	10 Hz to 100 kHz	0.012 % to 0.013 %
78	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer	Using Time Calibrator by Direct / Comparison Method	1 Sec to 10800 Sec	0.1 Sec to 4.88 Sec
79	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer	Using Time Calibrator by Direct / Comparison Method	10800 Sec to 86400 Sec	4.88 Sec to 36.891 Sec
80	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 Hz to 500 kHz	10.2 % to 1.68 %
81	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator Fluke 5502E by Direct Method	500 kHz to 2 MHz	1.68%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

15 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
82	FLUID FLOW- FLOW MEASURING DEVICES	Anemometer, Velocity Sensor with indicator, Hot Wire Anemometer, Capture Hood, Vane Type Anemometer	Using Hot wire Anemometer By Comparison Method	0.5 m/s to 22 m/s	4.23%
83	FLUID FLOW- FLOW MEASURING DEVICES	Rotameter, Flow Mater, Gas Flow Meter, Dry Gas Meter, Flow Rate Measuring Meters	Using Air Flow Calibrator / Gas Flow Analyzer by Comparison method	0.5 LPM to 25 LPM	12.73 % to 2 %
84	FLUID FLOW- FLOW MEASURING DEVICES	Rotameter, Flow Mater, Gas Flow Meter, Dry Gas Meter, Flow Rate Measuring Meters	Using Air Flow Calibrator / Gas Flow Analyzer by Comparison method	25 LPM to 100 LPM	2.2%
85	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Acceleration	Using Vibration meter By Comparison Method	1 m/s² to 30 m/s²	3.8%
86	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Velocity	Using Vibration meter By Comparison Method	1 mm/s to 65 mm/s	3.8%
87	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Displacement	Using Vibration meter By Comparison Method	0.05 mm to 0.6 mm	3.8%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

16 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
88	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Speed / RPM Indicator of Washing M/c, Speed / RPM Indicator Drying M/c L.C. 1 rpm and coarser	Using tachometer by comparison method:	10 rpm to 8000 rpm	0.36%
89	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Stroboscope / Speedo Meter /Stirrer / RPM Source / Vibrating M/c / Abrasion Testing M/c / Centrifuge	with using motorized	10 rpm to 100000 rpm	0.36%
90	MECHANICAL- ACCELERATION AND SPEED	Tachometer, RPM Meter, Speedo Meter, Centrifuge, Contact Type	Non-Contact Tachometer Stroboscope / Speedo Meter /Stirrer / RPM Source / Vibrating M/c / Abrasion Testing M/c / Centrifuge	10 rpm to 10000 rpm	0.36%
91	MECHANICAL- ACOUSTICS	Sound Level Meter @ 1 kHz	Using Sound Calibrator by Comparison Method	114 dB	1.1 dB
92	MECHANICAL- ACOUSTICS	Sound Level Meter @ 1 kHz	Using Sound Calibrator by Comparison Method	94 dB	1.1 dB

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

17 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
93	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Bevel Protractor / Inclinometer / Clinometer L.C 1 min	Using Angle Gauges by Comparison Method	(0 - 90 - 0) °	4.5min
94	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Bore Dial Gauge (Transmission Accuracy Check Only) L.C 0.001 mm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 1 mm	2.1μm
95	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) 0.01 mm and Coarser	"Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 300 mm	11μm
96	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) 0.01 and Coarser	"Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 600 mm	12.5µm
97	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Caliper (Vernier / Digital/ Dial) L.C 0.01 mm and Coarser	"Using Caliper Checker, & Slip Gauge Set by Comparison Method	0 to 1000 mm	15µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

18 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
98	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Coating Thickness Gauge 0.1µm and Coarser	Using Master Foils by Comparison Method	Up to 1 mm	3.3µm
99	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Combination Set /Degree Protractor (L.C.: 1°)	Using Angle Gauges by Comparison Method	0 ° to 180 °	45 min of arc
100	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Depth Caliper (Vernier / Digital/ Dial) L.C 0.01 mm and Coarser	"Using Slip Gauge Set Caliper Checker & Accessories by Comparison Method"	0 to 300 mm	12.31 μm
101	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Gauge Lever L.C 1 μm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 1 mm	2.1μm
102	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Gauge Plunger L.C 0.1µm and Coarser	Using Universal Length Measuring Machine by Comparison Method	0 to 25 mm	1.8µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

19 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
103	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Dial Thickness Gauge L.C. : 0.001 mm	Using Grade "0" Slip Gauges, by Comparison Method	0 to 10 mm	1.1μm
104	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	"Using Slip Gauge Set by Comparison Method"	0 to 25 mm	1.1μm
105	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar Cylinder Master by Comparison Method	25 mm to 100 mm	2.5μm
106	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	Using Slip Gauge Set, & Length Bar by Comparison Method	300 mm to 600 mm	8.4µm
107	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C 0.001 mm and Coarser	"Using Slip Gauge Set , Length Bar & Accessories by Comparison Method"	600 mm to 1000 mm	12.7μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

20 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
108	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External / Outside Micrometer L.C. 0.001 mm	"Using Slip Gauge Set & Length bar by Comparison Method"	100 mm to 300 mm	4.22μm
109	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Feeler Gauge / Master Foils	Universal length measuring machine by Comparison Method	0 to 1 mm	1.3µm
110	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Height Gauge (Vernier, Dial, Digital) 0.001 mm Coarser	"Using Slip Gauge Set, Surface Plate & Caliper Checker by Comparison Method	0 to 600 mm	14 μm
111	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Height Gauge (Vernier, Dial, Digital) L.C 0.01 mm and Coarser	"Using Surface Plate & Caliper Checker by Comparison Method "	0 to 1000 mm	16.2 μm
112	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Inside Dial Caliper L.C. 0.025 mm & Coarser	Using Slip Gauge Set /Caliper Checker & Accessories by Comparison Method	10 mm to 35 mm	19.6µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

21 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
113	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Internal Micrometer (traverse) L.C. 0.01 mm & Coarser (Extension not more than 1000 mm)	Using Slip Gauge Set /Length Bar / caliper checker and Accessories by Comparison Method	5 mm to 1000 mm	14.2µm
114	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Measuring Tape / Pie Tape L.C. : 1 mm	Using Scale Calibrator by Comparison Method	0 to 50 m	(161 x SQRT of L) (L in meter.)μm
115	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Pin Gauge	Using Universal Length Measuring Machine	0.15 mm to 50 mm	0.81µm
116	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Pistol Caliper L.C. : 0.1 mm and Coarser	Using Grade "0" Slip Gauges, by Comparison Method	0 to 90 mm	66.5µm
117	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Plug Gauge , Setting Plug ,	Using Universal length Measuring Machine by Comparison Method	100 mm to 300 mm	4.9μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

22 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
118	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Plug Gauge, Setting Plug Gauge, Width Gauge,	Using Universal length Measuring Machine by Comparison Method	0.15 mm to 100 mm	2.5µm
119	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Ring Gauge, Setting Ring Gauge	Using Universal Length Measuring Machine with Master Ring Gauge by Comparison Method	3 mm to 300 mm	4.6μm
120	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Radius Gauge (concave and convex profiles)	Using Video Measuring Machine by Comparison Method	1 mm to 25 mm	10.8 μm
121	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Snap Gauge / Gap Gauge / C & I Type	Using Universal Length Measuring Machine by Comparison Method	2.5 mm to 100 mm	2.9μm
122	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Snap Gauge, Gap Gauge, (C & I Type)	Using Universal Length Measuring Machine by Comparison Method	100 mm to 200 mm	3.2µm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

23 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
123	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Standard Wire Gauge	Using Video Measuring Machine by Comparison Method	0.17 mm to 8 mm	6.6µm
124	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Steel Scale L.C 1 mm	Using Tape & Scale Calibrator by Comparison Method	Up to 1000 mm	+/- (160 x SQRT of L) μm(L in mtr.)
125	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Test Sives	Using Video Measuring Machine by Comparison Method	0.075 mm to 10 mm	6.8µm
126	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Test Sives	Using Digital Caliper by Comparison Method	50 mm to 100 mm	79 μm
127	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Measuring Wires	Using Universal Length Measuring Machine by Comparison Method	0.17 mm to 6.35 mm	0.7μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

24 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
128	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Pitch Gauge (Angle)	Using Video Measuring Machine by Comparison Method	Up to 90°	6.0min. of arc
129	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Pitch Gauge (Pitch)	Using Video Measuring Machine by Comparison Method	0.4 mm to 6 mm	8.7μm
130	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Plug Gauge (W.C.P. /C.P./Setting Plug) Major Dia Effective Dia	Measuring Wires with Universal Length Measuring Machine by Comparison Method	100 mm to 300 mm	5.3μm
131	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Plug Gauge (W.C.P. /C.P./Setting Plug) Major Dia Effective Dia	Measuring Wires with Universal Length Measuring Machine by Comparison Method	3 mm to 100 mm	2.63µm
132	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Ring Gauge (WCR/CR) Effective Dia	Using Universal Length Measuring Machine with Master Ring Gauge by Comparison Method	3 mm to 300 mm	4.6μm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

25 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
133	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Ultrasonic Thickness Gauge L.C 0.01 mm	Using Slip Gauge Set by Comparison Method	0 to 100 mm	16.1µm
134	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Weld Gauge- Angle	Using Video Measuring Machine with Comparison Method	0 ° to 90 °	12.8min
135	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Weld Gauge- Depth Measurment	Using Video Measuring Machine & Slip Gauge Set by Comparison Method	0 to 25 mm	86µm
136	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Length Bar / Long Gauge Block /Micrometer Setting Standard	Using Universal Length Measuring Machine by Comparison Method	25 mm to 400 mm	1.25 μm
137	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Length Bar / Long Gauge Block /Micrometer Setting Standard	Using Slip gauge set / Length bar and Dial Gauge 0.1µm by Comparison Method	400 mm to 1100 mm	9.1μm
138	MECHANICAL- DUROMETER	Rubber Hardness Tester: Spring Force Calibration	Using Shore Hardness Tester Calibrator as per ASTM D 2240-15	10 Shore A to 100 Shore A	1.78Shore A

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

26 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
139	MECHANICAL- DUROMETER	Rubber Hardness Tester: Spring Force Calibration	Using Shore Hardness Tester Calibrator as per ASTM D 2240-15	10 Shore D to 100 Shore D	1.78Shore D
140	MECHANICAL- PRESSURE INDICATING DEVICES	Barometer, Abs. Pressure Gauge /Manometer	Using Digital Pressure Gauge(Abs.) By Comparison Method	150 mbar to 1500 mbar	1.2mbar
141	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator /Manometer /Pressure Transmitter Differential	Using Automatic Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 20 bar	0.008bar
142	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure Dial and Digital Pressure Gauges, Pressure Transmitters, Pressure Switch, Pressure Calibrator	Using Digital Pressure Gauge and Pressure Comparator By Comparison method as per DKD-R-6-1	0 to 1000 bar	0.8bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

27 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
143	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure Dial and Digital Pressure Gauges, Pressure Transmitters, Pressure Switch, Pressure Calibrator	Using Pressure Calibrator By Comparision Method as per DKD R-6-1	0 to 400 bar	0.098bar
144	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure (Master Pressure Gauge, Pressure Calibrator, Pressure Transducer, Pressure Transmitter)	Using Pressure Calibrator By Comparision Method as per DKD R-6-1	0 to 700 bar	0.1bar
145	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator, Pressure Transmitter Differential	Using Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 35 bar	0.005bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

28 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
146	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Using Digital Pressure Calibrator By Comparison Method using DKD R-6-1 / 2	-40 mbar to +40 mbar	0.1mbar
147	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Manometers, Pressure Calibrator, Pressure Transmitter Differential	Using Automatic Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 1 bar	0.0012bar
148	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Using Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 7 bar	0.004bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

29 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
149	MECHANICAL- PRESSURE INDICATING DEVICES	Vacuum Dial / Digital Gauges, Vacuum Calibrator & Vacuum Transmitters	Using Digital Vacuum Indicator & vacuum Comparator By Comparison Method as per DKD R-6-1	-0.99 to 0 bar	0.008bar
150	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	1 μl to 10 μl	0.06μΙ
151	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	10 μl to 100 μl	0.3μΙ
152	MECHANICAL- VOLUME	Micropipette	Using weighing balance of d: 0.001 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 8655-6	100 μl to 1000 μl	0.78μΙ

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

30 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
153	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric flask & Bottle Top Dispenser	Using weighing balance of d:0.01 mg, Distilled water Calibration of Micro pipettes based on Gravimetric Method as per ISO 4787	1 ml to 100 ml	0.1ml
154	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric flask & Bottle Top Dispenser	Using Weighing balance with d: 10 mg respectively & distilled water Calibration of Glassware based on Gravimetric method as per ISO 4787	100 ml to 1000 ml	0.5ml
155	MECHANICAL- VOLUME	Volume Glassware Pipette, Burette, Measuring cylinder, Volumetric flask & Bottle Top Dispenser	Using Weighing balance with d: 10 mg, respectively & distilled water Calibration of Glassware based on Gravimetric method as per ISO 4787	1000 ml to 5000 ml	1.3ml
156	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 0.001 g	Using E1 & E2 Class weights. Weighing Balance of Class 2 and Coarser as per OIML R-76-1	100 mg to 1 kg	9mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

31 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
157	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 0.1 g	Using F1 Class weights. Weighing Balance of Class III and Coarser as per OIML R-76-1	1g to 20 kg	100 mg
158	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 10 g	Using F2 Class weights up to 100kg. Weighing Balance of Class 3 and Coarser as per OIML R-76-1	100 g to 100 kg	10g
159	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 2 g	Using F1 Class weights up to 100 kg. Weighing Balance of Class 3 and Coarser as per OIML R-76-1	5g to 50 kg	2g
160	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability :0.01 mg	Using E1 & E2 Class weights. Weighing Balance of Class I and Coarser as per OIML R-76-1	1 mg to 200 g	0.06mg
161	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability 0.01 mg	Using E1 / E2 Class weights up to 200 g. Weighing Balance of Class I and Coarser as per OIML R-76-1	1mg g to 80 g	0.04mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

32 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
162	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances\ Readability :0.001 mg	Using E1 & E2 Class weights. Weighing Balance of Class I and Coarser as per OIML R-76-1	1 mg to 5 g	0.009mg
163	MECHANICAL- WEIGHTS	Mass-Weight E2 Class or Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg by substitution method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	5g	0.004mg
164	MECHANICAL- WEIGHTS	Mass-Weight M1 Class or Coarser	Using F1 Class Weights and Precision balance of 100 mg readability as per ABBA method . OIML-R111	10 kg	100mg
165	MECHANICAL- WEIGHTS	Mass-Weight M1 Class or Coarser	Using F1 Class Weights and Precision balance of 100 mg readability as per ABBA method . OIML-R111	20 kg	100mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

33 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
166	MECHANICAL- WEIGHTS	Mass-Weight M1 Class or Coarser	Using F2 Class Weights and Precision balance of 2 g readability as per ABBA method . OIML-R111	50 kg	2g
167	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	10 g	0.03mg
168	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	10 mg	0.002mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

34 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
169	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	100 g	0.04mg
170	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	1mg	0.002mg
171	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	2 g	0.002mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

35 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
172	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	20 g	0.03mg
173	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	20 mg	0.002mg
174	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	200 g	0.08mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

36 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
175	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	5 mg	0.002mg
176	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.01 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	50 g	0.03mg
177	MECHANICAL- WEIGHTS	Mass-Weights E2 Class or Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	2 mg	0.004mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

37 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
178	MECHANICAL- WEIGHTS	Mass-Weights E2Class or Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	1 g	0.004mg
179	MECHANICAL- WEIGHTS	Mass-Weights M1 Class and coarse	Using F1 Class Weights and Precision balance of 1 mg readability as per ABBA method . OIML-R111 (2004)	1000 g	8mg
180	MECHANICAL- WEIGHTS	Mass-Weights M1 Class Coarser	Using F1 Class Weights and Precision balance of 10 mg readability as per ABBA method . OIML-R111 (2004)	2 kg	10mg
181	MECHANICAL- WEIGHTS	Mass-Weights M1 Class Coarser	Using F1 Class Weights and Precision balance of 10 mg readability as per ABBA method . OIML-R111(2004)	5 kg	20mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

38 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
182	MECHANICAL- WEIGHTS	Mass-Weights M1 Class or Coarser	Using E2 Class Weights and Precision balance of 1 mg readability as per ABBA method . OIML-R111 (2004)	500 g	8mg
183	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	100 mg	0.002mg
184	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	200 mg	0.002mg

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

39 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
185	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	50 mg	0.002mg
186	MECHANICAL- WEIGHTS	Mass-Weights E2 Class and Coarser	Using E1 Class Standard Weights and Precision Balance of Readability: 0.001 mg method of Weighing and "ABBA" Weighing Cycle Procedure based on OIML R 111 (2004)	500 mg	0.003mg
187	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo-Hygrometer/ RH Sensors/ with indicator / Recorder/ Data logger @25°C	Using Humidity Chamber & Digital RH & Temperature indicator with Sensor probe	15 %RH to 95 %RH	1.68%RH

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

40 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
188	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo- Hygrometer/RH Sensors/ with indicator/ Recorder/ Data logger @ 50%RH	Using Humidity Chamber & Digital RH & Temperature indicator with Sensor probe	10 °C to 50 °C	0.66°C
189	THERMAL- TEMPERATURE	"Temp. Transmitter, Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch Temp. Gauge, Digital Thermometer Temp. Controller/indicator with Thermocouple"	Using in Dry Block Calibrator With S Type Thermocouple and Read Unit	600 °C to 1200 °C	2.64°C
190	THERMAL- TEMPERATURE	"Temp. Transmitter, Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch Temp. Gauge, Digital Thermometer Temp. Controller/indicator with RTD & Thermocouple"	Using in Dry Block Calibrator (50 to 650°C)With SPRT with Precision Temperature Scanner	250 °C to 600 °C	0.84°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

41 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
191	THERMAL- TEMPERATURE	"Temp. Transmitter, RTD/PT-100 Sensor (Thermocouple with & Without Controller/Indicator) Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch, Temp. Gauge, Digital Thermometer & Dry- Wet Thermome	Using Low Temperature Bath With SPRT And Precision Temperature Scanner	-30 °C to 50 °C	0.4°C
192	THERMAL- TEMPERATURE	Infrared Thermometer, Thermal Image, Radiation Pyrometer,	Comparison using Black Body with Emissivity (0.95) Source with Using Infrared Thermometer	50 °C to 500 °C	3.25°C
193	THERMAL- TEMPERATURE	Liquid In Glass Thermometers	Using Low Temperature Ethanol Bath With SPRT And Precision Tempreture Scanner	-30 °C to 50 °C	0.46°C
194	THERMAL- TEMPERATURE	Liquid In Glass Thermometers	Using Silicon Oil Bath With SPRT And Precision Tempreture Scanner	50 °C to 250 °C	0.39°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

42 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
195	THERMAL- TEMPERATURE	Temp. Transmitter, RTD/PT-100 Sensor, (Thermocouple with & Without Controller/ Indicator) Data Logger, Temp. Recorder, Temp. Switch, Temp. Gauge, Digital Thermometer,	Using Silicon Oil Bath(50 to 250°C) With SPRT with Precision Temperature Scanner	50 °C to 250 °C	0.27°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

43 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		3.0	Site Facility		-
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.120 % to 0.126 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.126 % to 0.136 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using AC/DC HV Probe with DMM By Direct Method	1 kV to 15 kV	1.68%
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	1.3 % to 0.076 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

44 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.070 % to 0.074 %
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 50 Hz & 1 kHz	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.076 % to 0.070 %
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	0.5 nF to 100 nF	3.854 % to 1.32 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	100 μF to 10 mF	1.411 % to 1.17 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Capacitance DC	Using 6½ Digit Precision Multimeter by Direct Method	100 nF to 100 μF	1.32 % to 1.411 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

45 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E with 50T Current Coil by Direct Method	20.0 A to 1000 A	0.956 % to 0.956 %
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 A to 10 A	0.144 % to 0.147 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	30 μA to 329.9 μA	0.348 % to 0.290 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 μA to 329.9 mA	0.290 % to 0.097 %
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mA to 3.3 A	0.097 % to 0.144 %
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 mV to 329.9 mV	0.233 % to 0.116 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

46 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 V to 1000 V	0.039 % to 0.059 %
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 50 Hz & 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mV to 3.3 V	0.116 % to 0.039 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	0.5 nF to 329 nF	0.597 % to 0.293 %
19	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Capacitance @ 1 kHz	Using Multi Product Calibrator Fluke 5502E by Direct Method	329 nF to 110 μF	0.293 % to 0.657 %
20	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Inductance @ 1 kHz	Using Decade Inductance Box by Direct Method	100 μH to 1 H	0.653 % to 0.98 %
21	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	10 μA to 100 μA	1.187 % to 0.072 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

47 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
22	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	100 μA to 400 mA	0.072%
23	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Current	Using 6½ Digit Precision Multimeter by Direct Method	400 mA to 10 A	0.072 % to 0.183 %
24	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC High Voltage	Using HV Divider Probe with DMM By Direct Method	1 kV to 15 kV	4.3%
25	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 mV to 100 mV	0.685 % to 0.07 %
26	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	1 V to 1000 V	0.071 % to 0.07 %
27	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC Voltage	Using 6½ Digit Precision Multimeter by Direct Method	100 mV to 1 V	0.07 % to 0.071 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

48 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
28	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	0.1 Ohm to 100 Ohm	0.048 % to 0.4 %
29	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 kOhm to 1000 MOhm	0.013 % to 1.35 %
30	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	Resistance	Using 6½ Digit Precision Multimeter by Direct Method	100 Ohm to 100 kOhm	0.4 % to 0.013 %
31	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 μA to 329.9 μA	0.20 % to 0.018 %
32	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	2.9 A to 10.9 A	0.05 % to 0.70 %
33	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E with 50T Current Coil by Direct Method	20.0 A to 1000 A	0.92 % to 0.92 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

49 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
34	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mA to 2.9 A	0.013 % to 0.05 %
35	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Current	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 μA to 329.9 mA	0.018 % to 0.013 %
36	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 k ohm	0.154%
37	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 m ohm	2.119%
38	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	1 ohm	0.15%
39	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	10 m Ohm to 329.9 Ohm	6.123 % to 0.011 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

50 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
40	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 k ohm	0.154%
41	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 m ohm	0.582%
42	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	10 ohm	0.156%
43	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 m ohm	2.313%
44	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Low Resistance Jig by Direct Method	100 ohm	0.154%
45	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 k ohm to 1100 M ohm	0.014 % to 1.804 %

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

51 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
46	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 Ohm to 329.9 kOhm	0.011 % to 0.015 %
47	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 mV to 329.9 mV	0.062 % to 0.007 %
48	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	3.3 mV to 1000 mV	0.006%
49	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Voltage	Using Multi Product Calibrator Fluke 5502E by Direct Method	329.9 mV to 3.3 V	0.007 % to 0.006 %
50	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	1 G ohm	2.319%
51	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	10 G ohm	2.361%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

52 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
52	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	10 M ohm	2.36%
53	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	100 G ohm	3.81%
54	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	100 M ohm	2.312%
55	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	1000 G ohm	5.519%
56	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	200 M ohm	2.342%
57	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	5 M ohm	5.94%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

53 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
58	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	High Resistance	Using High Resistance Jig by Direct Method	500 M ohm	2.316%
59	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT-100)	Using 6½ Digit Precision Multimeter by Direct Method	-200 °C to 800 °C	0.04°C
60	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (B Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	600 °C to 1800 °C	0.177°C
61	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (E Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 1000 °C	0.464°C
62	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (J Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1200 °C	0.12°C
63	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (K Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1370 °C	0.123°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

54 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
64	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (N Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1300 °C	0.131°C
65	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (R Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.309°C
66	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (S Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.283°C
67	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (T Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 400 °C	0.166°C
68	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	Thermocouple (U Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 600 °C	0.123°C
69	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-100-385 Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 800 °C	0.041°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

55 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
70	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT-1000-385 Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 630 °C	0.041°C
71	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (B Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	600 °C to 1800 °C	0.16°C
72	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (E Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 1000 °C	0.46°C
73	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (J Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200°C to 1200°C	0.12°C
74	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (K Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1370 °C	0.122°C
75	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (N Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 1300 °C	0.13°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

56 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
76	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (R Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.309°C
77	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (S Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	2 °C to 1760 °C	0.287°C
78	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (T Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-250 °C to 400 °C	0.153°C
79	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	Thermocouple (U Type)	Using Multi Product Calibrator Fluke 5502E by Direct Method	-200 °C to 600 °C	0.124°C
80	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using 6½ Digit Precision Multimeter by Direct Method	10 Hz to 100 kHz	0.012 % to 0.013 %
81	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer	Using Time Calibrator by Direct / Comparison Method	1 Sec to 10800 Sec	0.1 Sec to 4.88 Sec

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

57 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
82	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time Interval / Stop Watch / Timer	Using Time Calibrator by Direct / Comparison Method	10800 Sec to 86400 Sec	4.88 Sec to 36.891 Sec
83	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator Fluke 5502E by Direct Method	1 Hz to 500 kHz	10.2 % to 1.68 %
84	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Multi Product Calibrator Fluke 5502E by Direct Method	500 kHz to 2 MHz	1.68%
85	FLUID FLOW- FLOW MEASURING DEVICES	Liquid Media Analog & Digital Water Flow, Rotameter	"Using Ultrasonic Flow Meter by Comparison Method"	1 m3/h to 230 m3/h	1.73
86	FLUID FLOW- FLOW MEASURING DEVICES	Rotameter, Flow Mater, Gas Flow Meter, Dry Gas Meter, Flow Rate Measuring Meters	Using Air Flow Calibrator / Gas Flow Analyzer by Comparison method	0.5 LPM to 25 LPM	12.73 % to 2 %
87	FLUID FLOW- FLOW MEASURING DEVICES	Rotameter, Flow Mater, Gas Flow Meter, Dry Gas Meter, Flow Rate Measuring Meters	Using Air Flow Calibrator / Gas Flow Analyzer by Comparison method	25 LPM to 100 LPM	2.2%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

58 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
88	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Acceleration	Using Vibration meter By Comparison Method	1 m/s² to 30 m/s²	3.8%
89	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Velocity	Using Vibration meter By Comparison Method	1 mm/s to 65 mm/s	3.8%
90	MECHANICAL- ACCELERATION AND SPEED	Amplitude/ Vibration Meter Displacement	Using Vibration meter By Comparison Method	0.05 mm to 0.6 mm	3.8%
91	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Speed / RPM Indicator of Washing M/c, Speed / RPM Indicator Drying M/c L.C. 1 rpm and coarser	Using tachometer by comparison method:	10 rpm to 8000 rpm	0.36%
92	MECHANICAL- ACCELERATION AND SPEED	Non-Contact Tachometer Stroboscope / Speedo Meter /Stirrer / RPM Source / Vibrating M/c / Abrasion Testing M/c / Centrifuge	Using Digital Tachometer & Source By Comparison method with using motorized source with strip:	10 rpm to 100000 rpm	0.36%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

59 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
93	MECHANICAL- ACCELERATION AND SPEED	Tachometer, RPM Meter, Speedo Meter, Centrifuge, Contact Type	Non-Contact Tachometer Stroboscope / Speedo Meter /Stirrer / RPM Source / Vibrating M/c / Abrasion Testing M/c / Centrifuge	10 rpm to 10000 rpm	0.36%
94	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector/ Tool Makers Microscope / Optical Microscope, Linear X,Y Axis- L.C 0.001 mm	Using Standard Slip Gauge Block by Comparison Method	0 to 300 mm	7 μm
95	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector/ Tool Makers Microscope / Optical Microscope, Magnification	Using Digital Caliper by Comparison Method	0 to 100 X	1.3%
96	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Profile Projector/ Tool Makers Microscope / Optical Microscope, Angular L.C 1 min	Using Angle Graticule by Comparison Method	0° to 360°	2.2min
97	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Surface Plate	Using Electronic Level by Comparison Method	up to 3000mm x 3000 mm	1.8 * [(L+W)/125] µmWhere L is in mm

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

60 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
98	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine (X , Y , Z Axis) L.C. : 0.1 µm	Using Slip Gauge Set & Long Slips by Comparision method	0 to 300 mm	2μm
99	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine (X , Y , Z Axis) L.C. : 0.1 µm	Using Glass Scale by Comparision Method	0 to 300 mm	4.5μm
100	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Video Measuring Machine (X , Y , Z Axis) L.C. : 0.1 µm	Using Angle Graticule by Comparision Method	0° to 360°	0.5min
101	MECHANICAL- HARDNESS TESTING MACHINES	"VERIFICATION OF ROCKWELL HARDNESS TESTER BY INDIRECT METHOD"	Using Standard Test blocks as per IS 1586- 2018-2018 (Part 1,2),	HRA	1.6HRA
102	MECHANICAL- HARDNESS TESTING MACHINES	"VERIFICATION OF ROCKWELL HARDNESS TESTER BY INDIRECT METHOD"	"Using Standard Test blocks as per IS 1586-2018 (Part 1,2)	HRBW	1.6HRBW
103	MECHANICAL- HARDNESS TESTING MACHINES	"VERIFICATION OF ROCKWELL HARDNESS TESTER BY INDIRECT METHOD"	"Using Standard Test blocks as per IS 1586-2018 (Part 1,2)	HRC	1.8HRC

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

61 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
104	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator /Manometer /Pressure Transmitter Differential	Using Automatic Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 20 bar	0.008bar
105	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure Dial and Digital Pressure Gauges, Pressure Transmitters, Pressure Switch, Pressure Calibrator	Using Digital Pressure Gauge and Pressure Comparator By Comparison method as per DKD-R-6-1	0 to 1000 bar	0.8bar
106	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure Dial and Digital Pressure Gauges, Pressure Transmitters, Pressure Switch, Pressure Calibrator	Using Pressure Calibrator By Comparision Method as per DKD R-6-1	0 to 400 bar	0.098bar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

62 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
107	MECHANICAL- PRESSURE INDICATING DEVICES	Hydraulic-Pressure (Master Pressure Gauge, Pressure Calibrator, Pressure Transducer, Pressure Transmitter)	Using Pressure Calibrator By Comparision Method as per DKD R-6-1	0 to 700 bar	0.1bar
108	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator, Pressure Transmitter Differential	Using Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 35 bar	0.005bar
109	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Manometers, Magnehelic Gauge, Pressure Calibrator,Pressure Switch	Using Digital Pressure Calibrator By Comparison Method using DKD R-6-1 / 2	-40 mbar to +40 mbar	0.1mbar

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

63 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
110	MECHANICAL- PRESSURE INDICATING DEVICES	Pneumatic Pressure Digital & Dial Pressure Gauge, Pressure Transmitter, Pressure Switch, Pressure Calibrator	Using Pressure Calibrator By Comparison method as per DKD R-6-1	0 to 7 bar	0.004bar
111	MECHANICAL- PRESSURE INDICATING DEVICES	Vacuum Dial / Digital Gauges, Vacuum Calibrator & Vacuum Transmitters	Using Digital Vacuum Indicator & vacuum Comparator By Comparison Method as per DKD R-6-1	-0.99 to 0 bar	0.008bar
112	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine Compression mode	Using Load cell with Indicator of Class 1 or better, IS 1828:2015	0.1 kN to 5 kN	2.0%
113	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxial Testing Machine, Tension mode	Using Load cell with Indicator of Class 1 or better, IS 1828:2015	0.1 kN to 5 kN	2.0%
114	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxil Testing Machine, Compression mode	Using Load cell with Indicator of Class 1 or better, IS 1828:2015	5 kN to 500 kN	2.0%

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

64 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
115	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxil Testing Machine, (UTM/CTM/TTM) in Compression mode	Using Load cell with Indicator of Class 1 or better, IS 1828:2015 (Part-1)	200 kN to 1000 kN	2.0%
116	MECHANICAL- UTM, TENSION CREEP AND TORSION TESTING MACHINE	Uniaxil Testing Machine, Tension mode	"Using Load cell with Indicator of Class 1 or better, IS 1828:2015 (Part-1)	5 kN to 500 kN	2.0%
117	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 0.001 g	Using E1 & E2 Class weights. Weighing Balance of Class 2 and Coarser as per OIML R-76-1	100 mg to 1 kg	9mg
118	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 0.1 g	Using F1 Class weights. Weighing Balance of Class III and Coarser as per OIML R-76-1	1g to 20 kg	100 mg
119	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 10 g	Using F2 Class weights up to 100kg. Weighing Balance of Class 3 and Coarser as per OIML R-76-1	100 g to 100 kg	10g

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

65 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
120	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 2 g	Using F1 Class weights up to 100 kg. Weighing Balance of Class 3 and Coarser as per OIML R-76-1	5g to 50 kg	2g
121	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability : 50 g	Using M1 Class weights up to 300kg. Weighing Balance of Class 3 and Coarser as per OIML R-76-1	500g to 300 kg	50g
122	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability :0.01 mg	Using E1 & E2 Class weights. Weighing Balance of Class I and Coarser as per OIML R-76-1	1 mg to 200 g	0.06mg
123	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronics Weighing Balances Readability 0.01 mg	Using E1 / E2 Class weights up to 200 g. Weighing Balance of Class I and Coarser as per OIML R-76-1	1mg g to 80 g	0.04mg
124	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo-Hygrometer/ RH Sensors/ with indicator / Recorder/ Data logger @25°C	Using Humidity Chamber & Digital RH & Temperature indicator with Sensor probe	15 %RH to 95 %RH	1.68%RH

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

66 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
125	THERMAL- SPECIFIC HEAT & HUMIDITY	Dial/Digital & Analog Thermo- Hygrometer/RH Sensors/ with indicator/ Recorder/ Data logger @ 50%RH	Using Humidity Chamber & Digital RH & Temperature indicator with Sensor probe	10 °C to 50 °C	0.66°C
126	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber @25°C	Multi Position Calibration With Using Wireless Data loggers	15 %RH to 95 %RH	3.03%RH
127	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber @25°C	Single Position Calibration at Measuring Location in IUC With Digital RH & Temperature indicator with Sensor probe	15 %RH to 90 %RH	1.68%RH
128	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber @50%RH	Single Position Calibration at Measuring Location in IUC With Digital RH & Temperature indicator with Sensor probe	10 °C to 50 °C	0.38°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

67 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
129	THERMAL- TEMPERATURE	"Temp. Transmitter, Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch Temp. Gauge, Digital Thermometer Temp. Controller/indicator with Thermocouple"	Using in Dry Block Calibrator With S Type Thermocouple and Read Unit	600 °C to 1200 °C	2.64°C
130	THERMAL- TEMPERATURE	"Temp. Transmitter, Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch Temp. Gauge, Digital Thermometer Temp. Controller/indicator with RTD & Thermocouple"	Using in Dry Block Calibrator (50 to 650°C)With SPRT with Precision Temperature Scanner	250 °C to 600 °C	0.84°C
131	THERMAL- TEMPERATURE	"Temp. Transmitter, RTD/PT-100 Sensor (Thermocouple with & Without Controller/Indicator) Data Logger, Temp. Calibrator Temp. Recorder, Temp. Switch, Temp. Gauge, Digital Thermometer & Dry- Wet Thermome	Using Low Temperature Bath With SPRT And Precision Temperature Scanner	-30 °C to 50 °C	0.4°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

68 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
132	THERMAL- TEMPERATURE	Deep Freezers, Refrigerator, Cold Room	Multi Position Calibration With using data Logger with RTD/T- Thermocouple Sensors / Wireless datalogger:	-80°C to 50°C	1.75°C
133	THERMAL- TEMPERATURE	Environmental Chamber, Store Room, Environment controlling Room, Oven, Incubator, BOD Incubator, ETO Sterilizer, Sterilizer, Autoclave, Salt Spray Chamber, HPLC	Multi Position Calibration With using data Logger with RTD/T- Thermocouple Sensors / Wirless datalogger	50 °C to 400 °C	1.75°C
134	THERMAL- TEMPERATURE	Humidity Chamber/ Salt Spray Chamber / Environmental Chamber/Incubator	Multi Position Calibration With Using Wireless Data loggers	15 °C to 50 °C	2.46°C
135	THERMAL- TEMPERATURE	Oven, Dry Block, Furnace, Tunnel, Industrial Furnace	Multi Position Calibration With using data Logger with N Type Thermocouple	400 °C to 1200 °C	6.94°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

69 of 70

Validity

12/01/2021 to 11/01/2023

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
136	THERMAL- TEMPERATURE	Temp. Indicator/ Controller of Liquid bath, Dry Block, Freezers, Refrigerator, Incubator, BOD Incubator, Cold Room, Chamber, Environmental Chamber, Salt Spray Chamber,	Single Position Calibration at Measuring Location in IUC With SPRT and Read Unit Precision Temperature Scanner	-80 °C to 50 °C	0.45°C
137	THERMAL- TEMPERATURE	Temp. Indicator/ Controller of Liquid bath, Oven, Dry Block, Furnace, Autoclave, Incubator, Chamber, Environmental Chamber, Salt Spray Chamber	Single Position Calibration SPRT with Precision Temperature Scanner	50 °C to 600 °C	0.26°C
138	THERMAL- TEMPERATURE	Temp. Transmitter, RTD/PT-100 Sensor, (Thermocouple with & Without Controller/ Indicator) Data Logger, Temp. Recorder, Temp. Switch, Temp. Gauge, Digital Thermometer,	Using Silicon Oil Bath(50 to 250°C) With SPRT with Precision Temperature Scanner	50 °C to 250 °C	0.27°C

SCOPE OF ACCREDITATION

Laboratory Name:

MATRIX LAB, 209 TO 210 2ND FLOOR B WING M CUBE, VAPI, VALSAD, GUJARAT,

INDIA

Point App.

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-2664

Page No

70 of 70

Validity

12/01/2021 to 11/01/2023

Last Amended on

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
139	THERMAL- TEMPERATURE	of Oven Dry Block	Single Position Calibration at Measuring Location in IUC with S Type	600 °C to 1200 °C	1.83°C

^{*} CMCs represent expanded uncertainties expressed at approximately the 95% level of confidence, using a coverage factor of k = 2.

Tempreture Scanner

with Precision

